Home

Zapadnjački procenat stolica atomically thin mos2 a new direct gap semiconductor obnovljivi izvori članak Liker

PDF] Stability of direct band gap under mechanical strains for monolayer  MoS2, MoSe2, WS2 and WSe2 | Semantic Scholar
PDF] Stability of direct band gap under mechanical strains for monolayer MoS2, MoSe2, WS2 and WSe2 | Semantic Scholar

Bandgap broadening at grain boundaries in single-layer MoS2 | SpringerLink
Bandgap broadening at grain boundaries in single-layer MoS2 | SpringerLink

PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic  Scholar
PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic Scholar

Molybdenum Disulfide, MoS2: Theory, Structure & Applications | Ossila
Molybdenum Disulfide, MoS2: Theory, Structure & Applications | Ossila

Electronic properties of MoS2/MoOx interfaces: Implications in Tunnel Field  Effect Transistors and Hole Contacts | Scientific Reports
Electronic properties of MoS2/MoOx interfaces: Implications in Tunnel Field Effect Transistors and Hole Contacts | Scientific Reports

PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic  Scholar
PDF] Atomically thin MoS₂: a new direct-gap semiconductor. | Semantic Scholar

Phys. Rev. Lett. 105, 136805 (2010) - Atomically Thin ${\mathrm{MoS}}_{2}$:  A New Direct-Gap Semiconductor
Phys. Rev. Lett. 105, 136805 (2010) - Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor

Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap  engineering of transition metal dichalcogenides
Atomic–layer–confined multiple quantum wells enabled by monolithic bandgap engineering of transition metal dichalcogenides

Strain engineering of 2D semiconductors and graphene: from strain fields to  band-structure tuning and photonic applications | Light: Science &  Applications
Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications | Light: Science & Applications

High-harmonic generation from an atomically thin semiconductor | Nature  Physics
High-harmonic generation from an atomically thin semiconductor | Nature Physics

Temperature induced crossing in the optical bandgap of mono and bilayer MoS2  on SiO2 | Scientific Reports
Temperature induced crossing in the optical bandgap of mono and bilayer MoS2 on SiO2 | Scientific Reports

Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2  Heterostructures | Scientific Reports
Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures | Scientific Reports

Monolayer MoS2 for nanoscale photonics
Monolayer MoS2 for nanoscale photonics

PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor
PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor

Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and  Indirect–Direct Band‐Gap Transitions - Zhang - 2015 - Angewandte Chemie  International Edition - Wiley Online Library
Atomically Thin Arsenene and Antimonene: Semimetal–Semiconductor and Indirect–Direct Band‐Gap Transitions - Zhang - 2015 - Angewandte Chemie International Edition - Wiley Online Library

Bandgap tunability at single-layer molybdenum disulphide grain boundaries |  Nature Communications
Bandgap tunability at single-layer molybdenum disulphide grain boundaries | Nature Communications

PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor
PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor

Photoconversion efficiency in atomically thin TMDC-based heterostructures
Photoconversion efficiency in atomically thin TMDC-based heterostructures

Strain-induced semiconductor to metal transition in the two-dimensional  honeycomb structure of MoS2 | SpringerLink
Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 | SpringerLink

Molybdenum Disulfide, MoS2: Theory, Structure & Applications | Ossila
Molybdenum Disulfide, MoS2: Theory, Structure & Applications | Ossila

PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor
PDF) Atomically Thin MoS 2 : A New Direct-Gap Semiconductor